



# Serbia's national innovation system and its performance

Prof Đuro Kutlača, PhD Dušica Semenčenko, PhD

Marija Mosurović Ružičić, MSc. Institute Minajlo Pupin: <u>www.institutepupin.com</u>



# **Innovation governance in the Republic of Serbia**



#### Strategy of S&T Development of the Republic of Serbia 2010-2015

## Vision of the development of the Serbia in XXI century: Knowledge Based Society and Economy

"The Republic of Serbia as an innovative country, where scientists attain European standards, contribute to society's overall level of knowledge and advance the technological development of the economy."

## **Ministry of Education and Science**

### **Objective:**

# National Innovation System:

The ultimate objective is to create a system that fosters strong national innovation



#### **Strategic Vision**

"The development of an Entrepreneurial Economy, based on knowledge and innovativeness, which creates strong, competitive and export oriented SME sector and sustainability contributes to an increase in living standards in the Republic of Serbia."

### **Ministry of Economy and Regional Development**

The Strategy is based on five pillars, further developed in modules and measures, corresponding to the priorities in SME development and aimed to contribute to improving the performance of the entrepreneurs thorugh all stages of start-up, growth and development of SMEs:

**Pillar 1** deals with potential entrepreneurs, the conditions for establishing a start up and encouraging micro enterprises development within the SME sector.

**Pillars 2-4** define specific types of support to SMEs for growth and development, i.e. for transformation of micro into small and small into medium-sized enterprises.

**Pillar 5** is targeted at improving general business environment, whatever the size of the enterprise.





### Serbia – R&D system: Employment, Researchers





## Serbia – R&D system: Employment







#### Patent activity in Serbia

![](_page_7_Picture_2.jpeg)

![](_page_8_Figure_0.jpeg)

#### ISI – Authors from Serbia – number of papers

![](_page_8_Picture_2.jpeg)

![](_page_9_Figure_0.jpeg)

# Radosevic, Kutlaca, 2010: National innovation capacity of the SEE countries

![](_page_9_Picture_2.jpeg)

# **STRENGHTS**

- •Serbian **budget allocations** for science grew significantly
- Rising number of papers on the SCI list and the number of citation
- Adopted institutional framework for restructuring and transformation of R&D system
  Good information support system for public
  R&D sector through COBISS
- Number of SMEs invest in inner R&D
  FDI in R&D (SMEs suppliers of foreign corporations)

![](_page_10_Picture_5.jpeg)

## WEAKNESS

- •The absence of coordinated governance and funding of NIS in Serbia
- Still present linear model of governance of the R&D and innovation system
- •The attractiveness of R&D system for private investments in R&D is insufficient
- •Undeveloped infrastructure for innovative entrepreneurship and lack of culture for technological entrepreneurship HES and public R&D
- •Absence of an evaluation culture and practice in R&D and innovation system
- Insufficient knowledge about R&D and innovation capacities in business sector
- •Recognition of the needs for financing of innovation activities with a much larger budget and significantly increased financing per innovation grant
- Lack of demand-side R&D and innovation policy tools and measures
- •Obsolete R&D infrastructure
- Mobility of researchers is, at present, a one-way move
- •Very modest participation of R&D and innovative and corporate organizations in FP7:
- •Less than 20% of researchers have been involved in EU projects;
- •No single HE institution from Serbia within "Shanghai top 100 HE"
- •The number of patents registered by R&D organizations is low

![](_page_11_Picture_15.jpeg)

## **OPPORTUNITIES**

•The development of a national innovation system is an overall aim of S&T

#### Strategy

- •The special programme for development of human capital in Serbia
- •HE Law and Innovation Law which stimulates and legally approves creation of university and PROs spin-offs.
- •financial scheme for financing of the Innovation fund activities
- •**Public funding** of investments in R&D and Innovation activities in the period 2011-2014 will be realized under the S&T Strategy
- •**Three programs** for funding of Basic Research, Technological Development and Integrated and Interdisciplinary Research
- •The Law on Higher Education (LHE),
- Innovation Law
- •Commercialization of R&D results must be among the highest priorities for MES
- International S&T cooperation
- •The Republic of Serbia became the **member of the European Patent Organization**
- The MINI GRANTS Programme
- •The **Programme for Supporting SMEs and Entrepreneurs** to Strengthen Innovation Activities

# THREATS

- •Impact of the economic crisis on the R&D expenditure could be strongest in the public sector
- Ageing of the research population
- Drain of highly educated individuals from the country
- Crucial challenge for research governance in Serbia is question how to increase R&D and Innovation activities in Business Enterprise Sector
- •No equivalence in the High Education Law for research and scientific positions in High Education institutions
- Policy instruments for knowledge circulation promotion could have limited effects

![](_page_13_Picture_7.jpeg)

# The key structural challenges faced by the national innovation system in Serbia are:

- 1. The absence of coordinated governance and funding of national innovation system in Serbia between main ministries and public funding sources as a consequence of the fact that the concept, purpose and functioning of innovation is not sufficiently developed and accepted in the economy and the society in Serbia.
- 2. Still present **linear model of governance** of the R&D and innovation system in the country; this is the main obstacle for networking of R&D sector with the rest of economy and society. A crucial challenge for research governance in Serbia is the question how to increase R&D and Innovation activities in the BES.
- 3. One of the significant problems in preserving and strengthening the scientific community is the ongoing drain of highly educated individuals from the country.

# The key structural challenges faced by the national innovation system in Serbia are:

- 4. The attractiveness of R&D system in Serbia for **private investments in R&D** is insufficient because of the present structure and capacities of public R&D system. Restructuring of public R&D system and integration of BES into national innovation system is primary task for the government. In addition, legal framework is not in favour of private sector engagement in R&D and innovation activities.
- 5. **Undeveloped infrastructure for innovative entrepreneurship** and lack of culture for technological entrepreneurship in Higher Education Sector (HES) and public R&D laboratories and institutes (PRO Public Research Organisations).

![](_page_15_Picture_3.jpeg)

# The key structural challenges faced by the national innovation system in Serbia are:

- 6. Absence of evaluation culture and practice in R&D and innovation system in Serbia;
- 7. Insufficient knowledge about R&D and innovation capacities in BES;
- 8. Recognition of the needs for financing of innovation activities with a much larger budget and significantly increased financing per innovation grant;
- 9. Lack of demand-side R&D and innovation policy tools and measures in Serbia.

![](_page_16_Picture_5.jpeg)

| WOS search TOTAL                     | 2555 | 2603     | 3 352    | 26 4            | 111                | 4785                     | 5027               | 22607            |
|--------------------------------------|------|----------|----------|-----------------|--------------------|--------------------------|--------------------|------------------|
|                                      |      |          |          |                 |                    |                          |                    |                  |
|                                      |      | -        |          | -               |                    |                          |                    |                  |
| Web of Science Category              |      | 2005 (#) | 2006 (#) | <b>2007 (</b> # | <b>*) 2008 (</b> * | #) <mark>2009 (</mark> # | <b>#) 2010 (</b> # | <b>#)2005-10</b> |
| ENGINEERING ELECTRICAL ELECTRONIC    |      | 161      | 140      | 261             | 261                | 277                      | 172                | 1272             |
| MEDICINE GENERAL INTERNAL            |      | 11       | 12       | 28              | 312                | 332                      | 358                | 1053             |
| CHEMISTRY MULTIDISCIPLINARY          |      | 157      | 145      | 200             | 155                | 163                      | 178                | 998              |
| MATHEMATICS APPLIED                  |      | 78       | 102      | 139             | 155                | 240                      | 236                | 950              |
| MATERIALS SCIENCE MULTIDISCIPLINARY  |      | 135      | 146      | 171             | 149                | 149                      | 155                | 905              |
| CLINICAL NEUROLOGY                   |      | 161      | 114      | 82              | 144                | 187                      | 160                | 848              |
| PHARMACOLOGY PHARMACY                |      | 87       | 107      | 125             | 169                | 163                      | 138                | 789              |
| ONCOLOGY                             |      | 132      | 94       | 108             | 130                | 152                      | 144                | 760              |
| PHYSICS APPLIED                      |      | 55       | 90       | 189             | 128                | 157                      | 107                | 726              |
| MATHEMATICS                          |      | 69       | 87       | 116             | 139                | 152                      | 141                | 704              |
| PHYSICS MULTIDISCIPLINARY            |      | 66       | 69       | 165             | 103                | 179                      | 115                | 697              |
| NEUROSCIENCES                        |      | 120      | 92       | 56              | 129                | 142                      | 132                | 671              |
| CHEMISTRY PHYSICAL                   |      | 76       | 73       | 136             | 94                 | 139                      | 107                | 625              |
| ENGINEERING CHEMICAL                 |      | 19       | 46       | 100             | 115                | 175                      | 158                | 613              |
| BIOLOGY                              |      | 23       | 36       | 106             | 132                | 135                      | 162                | 594              |
| BIOCHEMISTRY MOLECULAR BIOLOGY       |      | 77       | 68       | 82              | 81                 | 150                      | 102                | 560              |
| TELECOMMUNICATIONS                   |      | 175      | 19       | 97              | 42                 | 121                      | 40                 | 494              |
| HEMATOLOGY                           |      | 23       | 40       | 69              | 99                 | 72                       | 154                | 457              |
| ENVIRONMENTAL SCIENCES               |      | 46       | 43       | 65              | 71                 | 116                      | 113                | 454              |
| PERIPHERAL VASCULAR DISEASE          |      | 50       | 97       | 43              | 75                 | 59                       | 104                | 428              |
| OPTICS                               |      | 40       | 55       | 84              | 103                | 79                       | 66                 | 427              |
| PLANT SCIENCES                       |      | 49       | 55       | 89              | 93                 | 60                       | 70                 | 416              |
| ASTRONOMY ASTROPHYSICS               |      | 38       | 73       | 44              | 129                | 89                       | 42                 | 415              |
| COMPUTER SCIENCE THEORY METHODS      |      | 48       | 34       | 57              | 60                 | 120                      | 72                 | 391              |
| COMPUTER SCIENCE ARTIFICIAL INTELL   | 28   | 51       | 64       | 106             | 80                 | 59                       | 388                |                  |
| COMPUTER SCIENCE INFORMATION SYSTEMS |      | 96       | 9        | 47              | 78                 | 103                      | 51                 | 384              |

![](_page_17_Picture_1.jpeg)

|                                                                | PAI1      | PAI2      | PAI3      | PAI4      | PAI5      | PA-tot    |                 |
|----------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------|
| WIPO N Technical Unit                                          | 1995-1997 | 1998-2000 | 2001-2003 | 2004-2006 | 2007-2009 | 1995-2009 |                 |
| 13 Chemistry (Organic)                                         | 2143      | 12395     | 585       | 70        | 86        | 15279     |                 |
| 31 Electricity (Electronic Circuits, Communication Techniques) | 1330      | 12483     | 16        | 22        | 14        | 13865     |                 |
| 4 Health; Amusement                                            | 1317      | 10502     | 192       | 227       | 231       | 12469     |                 |
| 5 Preparations for medical, dental or toilet purposes          | 1433      | 10044     | 388       | 141       | 210       | 12216     |                 |
| 27 Instruments (Horology, Regulating, Computing)               | 788       | 10501     | 55        | 58        | 34        | 11436     |                 |
| 16 Chemistry (Biochemistry, Sugar industry, Leather)           | 999       | 8949      | 53        | 37        | 20        | 10058     |                 |
| 26 Instruments (Measuring, Optics, Photography)                | 945       | 7826      | 70        | 59        | 61        | 8961      |                 |
| 30 Electricity (Electric Techniques)                           | 878       | 7062      | 120       | 159       | 100       | 8319      |                 |
| 32 Others (unclassified)                                       | 1273      | 7038      | 0         | 2         | 0         | 8313      |                 |
| 10 Transporting                                                | 422       | 4740      | 140       | 134       | 72        | 5508      |                 |
| 6 Separating; Mixing                                           | 594       | 4172      | 47        | 64        | 65        | 4942      |                 |
| 20 Building                                                    | 547       | 3271      | 151       | 187       | 90        | 4246      |                 |
| 8 Shaping (Material Processing)                                | 488       | 3392      | 50        | 101       | 73        | 4104      |                 |
| 14 Chemistry (Macromolecular compounds)                        | 402       | 3488      | 16        | 4         | 7         | 3917      |                 |
| 15 Chemistry (Dyes, Animal and Vegetable Oils)                 | 515       | 3198      | 49        | 31        | 23        | 3816      |                 |
| 3 Personal or domestic articles                                | 441       | 3063      | 91        | 103       | 71        | 3769      |                 |
| 11 Micro-structural technology; Nano-technology                | 601       | 2349      | 21        | 68        | 51        | 3090      |                 |
| 12 Chemistry (Inorganic)                                       | 326       | 2384      | 67        | 113       | 38        | 2928      |                 |
| 23 Engineering in general                                      | 397       | 2351      | 70        | 64        | 32        | 2914      |                 |
| 28 Instruments (Musical Instruments, Information Storage)      | 276       | 2247      | 24        | 39        | 25        | 2611      |                 |
| 22 Engines or Pumps                                            | 366       | 1789      | 118       | 171       | 127       | 2571      |                 |
| 2 Food stuffs; Tobacco                                         | 330       | 1855      | 75        | 102       | 151       | 2513      |                 |
| 24 Lighting; Heating                                           | 295       | 1852      | 86        | 97        | 66        | 2396      |                 |
| 7 Shaping (Metal)                                              | 244       | 1665      | 35        | 28        | 24        | 1996      |                 |
| 1 Agriculture                                                  | 222       | 1473      | 54        | 94        | 57        | 1900      |                 |
| 17 Metallurgy                                                  | 162       | 1537      | 44        | 30        | 12        | 1785      | ĺ               |
| 9 Printing                                                     | 149       | 1211      | 15        | 13        | 5         | 1393      |                 |
| 18 Textiles; Flexible Materials                                | 149       | 1151      | 10        | 13        | 6         | 1329      |                 |
| 19 Paper (including class B31)                                 | 151       | 1015      | 0         | 2         | 0         | 1168      | ĺ               |
| 21 Earth drilling; Mining                                      | 109       | 854       | 1         | 4         | 3         | 971       |                 |
| 25 Weapons; Blasting                                           | 90        | 457       | 38        | 38        | 24        | 647       | 0               |
| 29 Nucleonic                                                   | 20        | 177       | 5         | 11        | 3         | 216       |                 |
| Total                                                          | 18402     | 136491    | 2686      | 2286      | 1781      | 161646    | t MIHAJLO PUPIN |

![](_page_19_Figure_0.jpeg)

(Intercultural Cooperation and Its Importance for Survival), Mc Graw Hill, 2005

MIHAJLO PUPIN

institut

Busines Enterprise Sector Pessimist vs. Optimist view:

- R&D ?
- Innovation activities ?
- Faculty of Technical Sciences, University of Novi Sad: 68+ spin-offs

![](_page_20_Picture_4.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

# Answers

![](_page_21_Picture_5.jpeg)