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The necessity of the reduction of greenhouse gas emissions, as formulated in 

the Kyoto Protocol, imposes the need for improving environmental aspects of 

existing thermal power plants operation. Improvements can be reached either 

by efficiency increment or by implementation of emission reduction measures. 

Investments in refurbishment of existing plant components or in plant 

upgrading by flue gas desulphurization, by primary and secondary measures of 

nitrogen oxides reduction, or by biomass co-firing, are usually accompanied by 

modernisation of thermal power plant instrumentation and control system 

including sensors, equipment diagnostics and advanced controls. 

Impact of advanced control solutions implementation depends on technical 

characteristics and status of existing instrumentation and control systems as 

well as on design characteristics and actual conditions of installed plant 

components. Evaluation of adequacy of implementation of advanced control 

concepts is especially important in Western Balkan region where thermal 

power plants portfolio is rather diversified in terms of size, type and 

commissioning year and where generally poor maintenance and lack of 

investments in power generation sector resulted in high greenhouse gases 

emissions and low efficiency of plants in operation. 

This paper is intended to present possibilities of implementation of advanced 

control concepts, and particularly those based on artificial intelligence, in 

selected thermal power plants in order to increase plant efficiency and to lower 

pollutants emissions and to comply with environmental quality standards 

prescribed in large combustion plant directive. 
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1. Introduction 

 

West Balkan Countries (WBCs) are heading towards EU integration. Due to EU membership, WBCs will be 

forced to comply with current EU legislative related to thermal power plant efficiency and emission control. 

All EU member countries have ratified the Kyoto protocol which requires energy consumption and emission 

pollution decreasing. EU parliament has promoted numerous obligations, laws and Directives to meet goals 

from the Kyoto protocol and to reduce environment pollution. 

 

Most of EU counties have started the process of shutting down old and inefficient power plants which are 

mostly coal and heavy oil fired. Additional investments into these thermal power plants (TPPs) and their and 

refurbishment becomes unnecessary. Construction of new coal or heavy oil fired power plants is removed 

from large number of national energy strategies and replaced with construction of renewable energy based 

facilities in order to meet goals from Kyoto protocol and EU Directives.  

 

One solution for emission mitigation problem is implementation of secondary measures technology in 

thermal power plants. Some of secondary measures technologies for NOx and SOx reduction are selective 

catalytic reduction (SCR), selective non-catalytic reduction (SNCR), ammonia injection, ammonia scrubbers, 

oxygen-enriched combustion (OEC) and other measures described in [1]. However secondary measures are 

investment intensive. Another solution is getting primary measures closer to the power plant processes limits 

using advanced techniques regarding power, temperature, combustion and frequency control. These 

measures often prove to be very useful and cost effective [3]. But construction and simulation of such models 

(especially combustion models) by means of mathematical, physical and chemical analysis (with CFD 

programs) is very complex process with very long computation time. Because of this reasons, utilization of 

these models are impracticable for on-line power plant control [4].  

 

Advanced control technologies for improving system operability and environment maintainability based on 

artificial-intelligence (AI) seems to be promising approach for modelling and controlling large and nonlinear 

power generation processes.  

 

2. West Balkan Countries thermal power plant status 

 

The power generated by fossil power plants represents about 59% (52% from coal, 4% from oil and 3% from 

gas) of all produced power in the WB region Error! Reference source not found.. Most of fossil power 

plants currently in operation were constructed mainly between 1955 and 1990 during lower emission 

restrictions. From 1991 till 2008 the technology of power generation and the environmental characteristics of 

the operating fossil fuel-fired plants in the Western Balkans Countries had not been improved considerably. 

This is a result of poor maintenance and lack of investments in the energy generation sector. All these factors 

finally result in high greenhouse gases emissions and low efficiency of WBCs thermal power plants. Some of 

power plants were partially reconstructed (with introduction of ecology friendly technologies) which resulted 

in lower NOx, SO2 and fly ash emissions. Some of the NOx emissions restricting measures were made as 

primary measures. On the other hand the secondary measures, which support the inhibition of already created 



NOx, were not widely used mostly because of their high investment costs. Currently, the NOx emissions in 

most of the fossil fuel power plants vary between 200 and 750 mg/Nm
3
 Error! Reference source not found., 

which is a considerable reduction in comparison to the past decades. Some of these emissions however still 

exceed today’s EU limits and most of them exceed the future limits, coming to validity in 2016, setting the 

NOx emissions limit to 200 mg/m3. Discharge of CO2 is, however, comparable with EU TPPs, which can be 

explained by the very nature of the system employed for energy transformation.  

Domestically produced lignite and natural gas were important fuels for heavy industries during the era of 

central planning in the 1980s and 1990s. Demand for these fuels had decreased with the closure of most 

heavy industry. The lignite is of low quality with contents of sulphur (0.3 to 1%), ash (10 to 30%) and 

moisture (up to 60%) [6, 7]. It also has low calorific value (in the range of 4 500 to 10 000 kJ/kg). Western 

Balkan energy sector also faces some non-technical problems such as reorganisation of ownership structure, 

difficult working conditions, social issues, etc. [8] 

 

General Western Balkan energy sector characteristics and key challenges are: 

 lack of domestic capacity for thermal electricity generation 

 high energy intensity 

 higher energy consumption in the future due to economical expansion 

 low oil and natural gas reserves, fossil fuel import 

 domestically produced lignite of low quality 

 old TPP technology 

 lack of TPP maintenance 

 low TPPs efficiency 

 frequent TPP outages 

 SO2  and NOX emissions above EU limits 

 low investment possibilities in energy sector 

 coal preparing problem (milling, dosing, pre-heating) 

 poor power plant personnel process understanding  

 

3. Information and Communication Technology based systems 

The primary task for power plant operation is to meet the load demand for electric power and to ensure 

stable, safe and efficient power generation. However, task of establishing optimal power plant operation 

processes seems to be very demanding.  

 

Purely software-oriented approach to optimizing processes has been an ongoing success in the world's power 

plants for just on a decade now and has made many improvements regarding power plants operability, 

efficiency etc. (Tab 1.).  Besides being widely incorporated into new power plants, process optimization is 

nowadays a popular choice for power plant upgrades. More and more operators are going beyond simply 

replacing their old instrumentation and control systems and are taking the opportunity of a scheduled 

modernization to make their power plants more flexible to current market situation, which means greater 

flexibility and higher efficiency, better availability and lower emissions. 

 



Table 1. General classification of ICT based systems  

ICT based system 

group 

ICT based system  

 

 

 

High flexibility  

Power optimization 

Economic load allocation for boilers and turbines 

Combined cycle control tools 

Minimum load reduction 

Maximum load extension 

Fast load increase, fast TPP start-up, low loss TPP start-up 

Frequency control 

High availability Automatic runback control 

Low-stress operation 

Low emissions Emissions control 

High efficiency Advanced combustion optimization 

Temperature optimization 

 

General benefits of Information and Communication Technology (ICT) based systems for high flexibility is 

more flexible power generation which implies lower process losses during the load changes, start-ups and 

shut-downs. These loss reduction increases annual profit due to lower operational costs. Main disadvantages 

of ICT based systems for high flexibility is reduction of overall TPP efficiency and increment of annual 

emissions.  Due to poor electricity market optimisation in WBCs and high possibility of load regulation with 

hydro power plants, installation of high flexibility ICT systems do not offer great opportunities for thermal 

power plant efficient increment and emission reduction in WBs TPPs. 

 

Main advantage of higher TTPs availability optimisation is extended service life. Although it deals with WBs 

TPPs requirements for extended lifetime (in correlation with lack of domestic capacity for thermal electricity 

generation), it does not lower emissions or increase efficiency, which is main challenge for WBs TPPs. 

 

Poor power plant personnel process understanding and marginal emission reduction with no efficiency 

increment are key drawbacks for emission control ICT systems implementation in WBs TPPs. Generally, 

implementation of emission control systems in TPP is key requirement to reduce emissions and to comply 

with LCP emission standards. 

 

ICT based systems for high efficiency optimise thermal power plant processes to increase TPPs efficiency 

and due efficiency increment to lower emissions. Mentioned improvements are key challenges of WBs TTPs. 

Old emissions monitoring technology in WB TPPs encounters with possibilities of ICT systems to improve 

efficiency. Implementation of ICT based systems for higher efficiency gives great opportunity to increase 

efficiency and to reduce emissions within primary measures technologies. With the need of power production 

increment in WB sector, introduction of ICT based systems for high efficiency into TPP control system as 

one of primary measure seems to be promising action to meet this goal.  



Most of ICT based systems are implemented in coal TPPs, mainly to increase efficiency and flexibility and 

therefore reduce emissions and operational costs. Croatia is most prominent in ICT based systems 

implementation (Tab. 2). 

 

Table 2 . ICT based systems used in WBCs TPPs [9]  

ICT based system 

group 

ICT based system 

implemented 

Thermal power plant Country 

High efficiency Steam temperature 

optimization 

Coal TPP 210 MW Croatia 

Coal TPP 675 MW Macedonia 

High flexibility  Fast TPP start-up Coal TPP 210 MW Croatia 

Frequency control Coal TPP 210 MW Croatia 

High availability Automatic runback 

control 

Coal TPP 1650 MW Serbia 

Low emissions Emissions control Crude oil TPP 320 MW Croatia 

 

Comparative analysis of ICT based systems showed that the strongest way to compile with EU Directives 

and to minimize emissions and increase TPPs efficiency is to introduce combustion or/and steam temperature 

optimization into WBCs TPPs. But only combustion optimization directly successfully encounters thermal 

power plant efficiency and emission mitigation at the same time Error! Reference source not found.. 

 

4. Possibilities  for artificial intelligence systems implementation in thermal power plants 

Artificial intelligence systems (AIS) are widely accepted as a technology offering an alternative way to 

tackle complex and undefined problems. They can learn from examples, they are fault tolerant in the sense 

that they are able to handle noisy and incomplete data, they are able to deal with non-linear problems, and 

once trained can perform prediction and generalization at high speed. They have been used in diverse 

applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, 

optimization, signal processing, and social/psychological sciences. They are particularly useful in system 

modelling such as in implementing complex mappings and system identification Error! Reference source 

not found..  

 

As mentioned in Section 3, the strongest way to reduce emissions and to improve efficiency is combustion 

process optimisation. Combustion optimisation is mostly conducted through fuel and air flow regulation. 

Conventional air flow control for combustion processes (see Fig. 1) in coal TPPs consists of 4 PI controllers. 

Based on required boiler thermal load, measured O2 in flue gases on the boiler exit and firing requirements, 

first PI controller partially controls total air flow to minimize share of O2 in flue gases. Secondary PI 

controller, based on boiler thermal load, measured total air flow and regulated air flow for O2 minimization 

controls total air flow in combustion process. Total air flow is then divided into secondary air and tertiary air 

(air for additionally burning). Secondary air is subdivided for coal feeders where it is controlled separately. 

Based on coal feeder load, total secondary air for coal feeder is calculated. Secondary air for burners (inside 

same coal feeder) is then controlled separately, based on measured air temperature and calculated secondary 



air for coal feeder. Total tertiary air is calculated from boiler thermal load and total air flow. After that, 

tertiary air for every burner is controlled separately based on measured air temperature and calculated total 

tertiary air flow.  

Parameters for conventional PI controller in air flow control must be carefully tuned to meet control demands 

in various operating condition. One approach to tackle changing process states is gain scheduling approach, 

where parameters for linear PI controller can be adjusted regarding different operating point of the system.  

 

 

Figure 1. Appropriate places for AIS introduction to conventional air flow control 

 

Calculation of total, secondary and tertiary air flows based on boiler thermal load, coal feeder load and air 

temperature are purely linear. This calculation gives linear approximation of required air flows regarding 

input parameters. Processes behind these linear approximations are very complex and highly-nonlinear, so by 

introducing linear approximations into process control, we introduce a certain error between calculated 

approximations and real process values. Neuro-fuzzy control has possibility to “learn” from input parameters 

to approximate parameter values from these processes. With better process models, the calculated 

approximations are closer to real process values. That gives more realistic input parameters for process 

control, and improve overall process control. Places for Artificial Intelligence Systems introduction to 

conventional air flow control is shown in Fig. 1. 

 

Artificial neural networks and neuro-fuzzy models combustion optimization method can be divided into two 

stages. In the first stage, the relation between NOx emissions and various operational parameters of the boiler 

is modelled. After that, operational parameters for low NOx combustion are optimized. Optimization is based 

on previously constructed NOx emissions model. NOx emissions are often multi-dimensionally and highly 

nonlinearly correlated to boiler operational parameters, so it is difficult to establish a perfect NOx emissions 

predicting model. Due to high nonlinearity, establishing NOx emission predicting model depends on 

acquired (measured) emission data. Artificial neural-networks are well-known tools among artificial 

intelligence techniques, which are able to reproduce the relationships existing between input and output 

variables of highly nonlinear systems [12]. In the second stage of combustion modification, some 



optimization algorithms are used to manipulate the inputs of the model in order to minimize the emissions 

output. 

Coal combustion and NOx emission modelling can be conducted through CFD models [13, 14], but their 

very long computation time imposes need for different model that will be practical for on-line power plant 

control. Artificial neural networks and neuro-fuzzy models are currently the most researched approaches to 

and NOX emission modelling [15]. They have proved their effectiveness on emissions prediction and control 

Error! Reference source not found.. For coal combustion modelling, support vector regression approach 

[12] and generic algorithm approach [12] can be used, where unknown parameters act as random variables 

with a known aprior probability distribution. The process identification then shifts into process observation 

(measured data). 

 

5. Data processing and selection 

 

For utilizing neuro-fuzzy learning algorithm, the probability model has to learn from observed/measured 

data. Data for learning algorithm were extracted from minute based field measurements on the 650MWe 

thermal power plant Thermal Power Plant „Nikola Tesla B“ (TENT B), Obrenovac, Serbia. Parameters, with 

resolution of 1 min, selected for the purposes of neuro-fuzzy learning algorithm are: power output [MWe], 

coal/heavy oil flow rate [%, m
3
/h], total air quantity [Nm

3
/h], oxygen content in furnace/flue gasses [%], 

feeder loads [%], secondary and tertiary air flow [Nm
3
/h], fuel (coal and heavy oil) composition and air 

temperature [°C]. Measurements of some of these parameters are shown in Fig. 2. 

 

 
 

Figure 2. Measured data from 650MWe coal fired/heavy oil TPP unit 

 

Measured data have often some erroneous data due to human errors, faulty sensors etc. Because of that, 

before process prediction modelling and neuro-fuzzy learning algorithm utilization (neuro-fuzzy training), 
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training data preprocessing is needed. Erroneous data (called “outliers”) have to be indentified and removed 

from neuro-fuzzy training data. Erroneous data is often very difficult to indentify due to large data sets. They 

can be identified and removed either by observing data sets or by implementation of user defined rule system 

for erroneous data identification. For initial erroneous data identification, standard deviation rule system 

(±3σ) has been used. 

 

Some of secondary air flow measured values exceed upper or lower standard deviation limits (Fig.3). Due to 

this, they are removed from training data and replaced by interpolated value between values that are 3 minute 

before and 3 minute after erroneous data. Data values for interpolation are also checked to meet standard 

deviation rules before their usage. 

 

 

 

Figure 3. Data selection process after initial erroneous data identification 

 

In some cases measured data can exceed deviation limits for a longer time. This is not because of human 

measuring error or sensors fault, but due to power plant operation changes. In this case, for shorter time, 

power plant operator had to increase heavy oil flow (Fig. 4). Heavy oil flow values exceed upper deviation 

limits, but they are not erroneous data, so by that, they cannot be excluded from training data.  

For identification of such process data, user defined data identification rule system has been devised. It takes 

into consideration measured values that are 5 minutes before and 5 minutes after current measured value. If 

the measured value that is 5 minute before or 5 minute after current value is also over (or below) deviation 

limit, current value for identification is considered valid for training data. 

 

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

350

400

time [min]

S
e
c
o
n
d
a
ry

 a
ir
 f

lo
w

 [
N

m
3
/h

]

 

 

measured values

average value

upper deviation limit 

lower deviation limit 

selected data



 

 

Figure 4. Data selection process after user defined data identification 

 

After data selection, ANFIS total air flow prediction test model has been devised [18]. Average error 

between measured and calculated values without data selection is 4.97%, while average error with data 

selection is 2.95% (Fig.5). 

 

 

 

Figure 5. Selected data for artificial neural network training 
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6. Process parameter and emission prediction modelling 

 

Measured process data such as NOx and SOx emission values are necessary for overall process evaluation. 

With NOx and SOx emission values database, process performance can be evaluated and eventually 

improved regarding emission mitigation. 

 

In combustion process there are three primary sources of NOx formation: 

1) NOx formation due to bound nitrogen in fuel (fuel NOx) 

2) Formation of NOx due to high-temeprature combustion and residence time of nitrogen molecules at 

that temperatures (thermal NOx) 

3) NOx formation due to reaction of atmospheric nitrogen (promt NOx) 

 

For NOx emission calculation, Thompson and Li model has been used [19]. The NOx formation rate is 

primary function of combustion process temperature. The higher the temperature, the NOx formation rate is 

faster. In combustion process, fuel and air mixing imperfections effects NOx formation. Consequently, due 

to fuel and air mixing imperfections, NOx formation rate becomes affected by combustion temperature and 

air distribution.  

When the fuel flow in burner increases, the turbulence in combustion area becomes greater and it improves 

mixing process. Simultaneously, the temperature is raised due to additional fuel. With adding more primary 

air to the burners, turbulence becomes grater, but the combustion temperature falls due to higher combustion 

losses.  
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Where α0 and α1 are reactions coefficients regarding fuel flow and burner tilt positions, W
r
f  is fuel mass flow 

rate, ξ(t) is burner tilt position (in percentage), λst and λ are stoichiometric and real fuel to air ratio. The more 

primary air is added to burner for combustion process, the higher oxygen concentration in flue gases is 

occurred. 
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From Equation 2, Equation 1 becomes 
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Where va is specific volume of air (va =0.7767), β is theoretical oxygen volume percentage for combustion 

process and O2 is oxygen concentration. Theoretical oxygen volume percentage for combustion processes 

can be calculated from fuel composition that is defined by 
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Where C,S and H are mass content of carbon, sulphur and hydrogen in fuel. Substituting eq. 4 into eq. 3 NOx 

formation rate becomes 
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In this case, all the secondary damper positions are fixed during operation. Burner tilt positions which as 

percentage is ranging from 10% (lowest position) to 100% (highest position), setting 55% as middle position, 

are also fixed at 60%. After measurement of burner fuel and air flows on 650MWe coal fired thermal power 

plant, parameters α0, α1 and r were chosen as 23.77, 0.438 and 0.25.  

 

NOx formation model has been used for NOx values calculation on 650MWe coal fired thermal power plant. 

Burner load rate, burner primary air flow and O2 concentration, both with coal composition are considered in 

equation.  

 

7. Results 

 

After processing all the data from 650MWe coal fired/heavy oil thermal power plant unit, ANFIS model for 

total, secondary and tertiary air values approximation has been devised [18]. For devising ANFIS model, 

Mamdani model with Gauss membership functions has been used. In dependence of unit load and O2 content 

in flue gases total air values have been calculated.  

 

Steam boilers of the TENT B are designed for the domestic lignite from the coal mine „Kolubara“ as the 

main fuel.  As start-up fuel heavy fuel oil is used. Fuel heating value has been taken as constant (based on 

main guarantied design parameters of the coal). The lower heat capacity value of the fuel is 6.699 MJ/kg, the 

moisture content is 47.8 %, the ash content is 19% and the content of sulphur is 0.5 %. In the real power 

plant operation this will not be the case. Fuel with different composure (heating value, moisture composition 

etc.) is used for combustion process. Lack of coal quality homogenization can cause problems from the point 

of combustion optimisation.  

 

Only small divergence of the coal quality parameters (within the range of ±5 %) enables the optimization of 

the combustion process in the furnaces. However, due to the lack of homogenization, i.e. the equalization of 

the coal quality, the lower heat capacity of the coal supplied to the unit is in the range from 5 to 9 MJ/kg. 

Very often, during the winter season when energy demands are the highest, coal supplied to the thermal 

power plant is extremely low quality with very high moisture content. In this situation, combustion support 

with heavy oil burners is necessary to reach nominal boiler load. Co-combustion of low quality lignite and 

heavy oil in the boiler furnace has to be carefully led from the unit operators to achieve optimal combustion. 

That is the additional reason for implementation of artificial system for combustion optimization. 

 

ANFIS approximation model shows good corelation with measured values for total air flow calculation (Fig. 

6). The error between measured and calculated values is mostly between ±10% which represents good 

aproximation of total air values in dependance of unit load and O2 content in flue gases. Approxiation errors 



of secondary and tertiary air are mostly between ±20% but in some marginal cases they can reach ±50%. 

Measurement errors should also be considered.  

 

 
 

Figure 6. Calculated approximations of total air flow in comparison with measured values 

 

Fig. 7 shows calculated approximations of total air flow in dependence of unit load and O2 content in flue 

gasses. It is obvious that total air flow dependence is highly nonlinear and that values of total air flow in 

power plant unit have a “saddle” around unit load of 540 MW. By increasing or decreasing unit load, current 

process total air flow increases. On constant unit load there is no obvious correlation between O2 content and 

total air flow values. 
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Figure 7. Calculated approximations of total air flow in dependence of unit load and O2 content in flue 

gasses 

 

Fig. 8 presents dependence of secondary air flow (on burner 1) on coal feeder load and total air flow while 

Fig. 9 presents dependence of secondary air flow on total air flow and hot air temperature. Similar like in 

previous case, there is no obvious or linear defined correlation between secondary air flow, coal feeder load 

and total air flow.   

 

Figure 8. Secondary air flow calculations in dependence of coal feeder load and total air flow  
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Figure 9. Secondary air flow calculations in dependence of total air flow and hot air temperature 

 

Fig. 10 shows NOx values during 24h power plant operation. NOx values are ranging between 335 and 395 

ppm, while power load is ranging between 500 and 625 MWe.  NOx emissions are generally higher on lower 

power plant loads. 

 

 

 

Figure 10. NOx emission calculation in 650MWe coal fired unit 

260

262

264

266

268

1320

1340

1360

1380

1400

1420

1440
20

40

60

80

100

120

 

Hot air temperature [C]Total air flow [Nm
3
/h]

 

S
e
c
o

n
d

a
ry

 a
ir

 f
lo

w
 [

N
m

3
/h

]

40

50

60

70

80

90

100

0 500 1000 1500
450

500

550

600

650

T
P

P
 l
o
a
d
 [

M
W

e
]

0 500 1000 1500
340

360

380

400

420

time [min]

N
O

x
 [

p
p
m

]

 

 



Generally, with unit load increment, NOx emission values declines. On the same TPP output, with air flow 

increment, the NOx emission rises (Fig. 11). This is result of higher nitrogen input (derived from air) for 

combustion process. In this case, the temperature of combustion process is decreased which results in lower 

NOx formation rate, but additional nitrogen that is introduced through air flow increases NOx formation rate. 

General proposition for NOx minimisation is to keep real fuel to air ratio close to its recommended values 

that ensures complete combustion process.  

 

 
 

Figure 11. NOx emission calculations in dependence of total air flow and unit load 

 

8. Conclusion 

 

This paper has analysed the possibilities of implementation of advanced control concepts, particularly those 

based on artificial intelligence, in WBCs thermal power plant in order to optimize combustion, increase plant 

efficiency and to lower pollutants emissions. General Western Balkan energy sector characteristic is old and 

inefficient TPP technology and coal dependence with very low investment possibilities. Lack of investment 

possibilities imposes necessity of easily implementable, low cost solutions that encounters emissions and 

raises efficiency. Combustion optimisation is the strongest way to directly influences emission mitigation 

and efficiency increment. Adaptive neuro-fuzzy algorithms can be used for combustion process parameter 

and emission prediction modelling. ANFIS approximation model for total, secondary and tertiary air values 

calculation both with fuel flow calculations shows good correlation with measured values and by this it can 

be used for process parameter and emission values prediction. ANFIS approximation model can be further 

used for combustion optimisation and emission minimisation purposes. Lack of some detailed process 

parameter data for process parameter prediction modelling could lead to misleading results and conclusions 

regarding further TPP combustion process interpretation and control and thus it should be analysed.  
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Nomenclature 

 

α0 - reactions coefficients, [-]  

α1 - reactions coefficients, [-]  

W
r
f - fuel mass flow rate, [kg/s]  

ξ(t) - burner tilt position, [%]  

λst - stoichiometric fuel to air ratio, [-]  

λ - real fuel to air ratio, [-]  

va - specific volume of air, [m
3
/kg]  

β - theoretical oxygen volume percentage for combustion process, [kg/m
3
]  

O2 - oxygen concentration, [%]  

C - mass content of carbon in fuel, [kgC/kgf]  

S - mass content of sulphur in fuel, [kgS/kgf]  

H - mass content of hydrogen in fuel, [kgH/kgf]  

r - reactions coefficients, [-]  
   

  
 - NOx formation rate, [kg/s] 
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